Abstract
Embryonic stem-cell-related transcription factors are central to the establishment and maintenance of stemness and pluripotency, and their altered expression plays key roles in tumors, including hepatocellular carcinoma (HCC), a malignancy with no effective treatment. Here, we report on the embryonic stem cell marker, reduced expression 1 (REX1; also known as zinc finger protein 42), to be selectively down-regulated in HCC tumors. Deficiency of REX1 in HCC was attributed to a combination of hypermethylation at its promoter as well as histone modification by methylation and acetylation. Clinically, hypermethylation of REX1 was closely associated with neoplastic transition and advanced tumor stage in humans. Functionally, silencing of REX1 potentiated the tumor-initiating and metastasis potential of HCC cell lines and xenografted tumors. Lentivirus-mediated Rex1 ablation in liver of male immunocompetent mice with HCC, induced by hydrodynamic tail vein injection of proto-oncogenes, enhanced HCC development. Transcriptome profiling studies revealed REX1 deficiency in HCC cells to be enriched with genes implicated in focal adhesion and mitogen-activated protein kinase (MAPK) signaling. From this lead, we subsequently found REX1 to bind to the promoter region of mitogen-activated protein kinase kinase 6 (MKK6), thereby obstructing its transcription, resulting in altered p38 MAPK signaling. Our work describes a critical repressive function of REX1 in maintenance of HCC cells by regulating MKK6 binding and p38 MAPK signaling. REX1 deficiency induced enhancement of p38 MAPK signaling, leading to F-actin reorganization and activation of nuclear factor erythroid 2-related factor 2-mediated oxidative stress response, which collectively contributed to enhanced stemness and metastatic capabilities of HCC cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.