Abstract

Capacitor-discharge type waveforms are practical for defibrillation devices but may not be optimum. Discharging a capacitor as a series of high-frequency (HF) pulses may allow effective waveform shaping by modulating the pulses. This approach could lead to improved defibrillation by allowing waveforms that would otherwise be unachievable with a capacitor-discharge approach. However, little is known about defibrillation with HF. In open chest pentobarbital anesthetized dogs, we measured defibrillation thresholds for continuous rectangular waveforms with 5-, 10-, and 20-msec durations and for 10- and 20-msec long series of HF rectangular pulses. HF series had a 50% "on-time" duty cycle at 100 Hz to 20 kHz. At 1 kHz and above, defibrillation with HF required the same time-averaged current but approximately twice the peak current and energy as defibrillation with continuous waveforms having the same envelope duration. At lower frequencies, defibrillation peak current and energy approached values required for the continuous waveforms. While waveforms were not actually filtered, the heart responded as though the HF series were low-pass filtered. A filtered effective waveform model with a 3.7-msec time constant predicts these HF data and makes reasonable predictions for various continuous waveform shapes. Defibrillation is possible using HF pulses up to 20 kHz and has a frequency response similar to a low-pass filter. A filtered effective waveform model predicts these HF results and may help explain how waveforms influence defibrillation efficacy. While the unmodulated HF pulsing used in this study increased defibrillation requirements, these findings support the concept that HF pulse modulation can be used to change the effective shape of a waveform, which could permit more efficacious waveform shapes and a net reduction of thresholds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call