Abstract

The protective effects of 3 antioxidants on polymorphonuclear neutrophil-induced damage to mammary cells were evaluated in vivo using an endotoxin-induced mastitis model. Fifteen healthy, midlactation cows with no history of clinical Escherichia coli mastitis were randomly assigned to 1 of the 3 treatment groups corresponding to each modulator to be evaluated, that is, deferoxamine, catechin, and glutathione ethyl ester. Each cow had 1 quarter infused with saline and 1 quarter infused with the selected modulator; a third quarter was infused with lipopolysaccharides (LPS), whereas the fourth quarter received a combination of LPS and the modulator. Infusion of LPS caused acute mastitis as determined by visual observations and by large increases in milk somatic cell count, BSA, and proteolytic activity. These parameters were not affected by antioxidant administration. The extent of cell damage was evaluated by measuring milk levels of lactate dehydrogenase and N-acetyl-β-D-glucosaminidase activity. Levels of these parameters were several times higher after LPS administration. Intramammary infusions of catechin or glutathione ethyl ester did not exert any protective effect, whereas infusion of deferoxamine, a chelator of iron, decreased milk lactate dehydrogenase and NA-Gase activity, suggesting a protective effect against neutrophil-induced damage. The protective effect of deferoxamine was also evidenced by a lower milk level of haptoglobin. The proteolytic activity of mastitic milk was not influenced by the presence of deferoxamine. Overall, our results suggest that local infusion of deferoxamine may be an effective tool to protect mammary tissue against neutrophil-induced oxidative stress during bovine mastitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.