Abstract

Cyanogenesis is a widespread and effective defense mechanism in plants. Published evidence suggests that cyanogenic capacity (i.e., cyanogenic glycoside concentration) is enhanced in response to water stress, although potentially confounding variables preclude a definite conclusion. We used highly cyanogenic Eucalyptus cladocalyx var. nana F. Muell. seedlings grown with varying amounts of water and nitrogen (N) to determine the relationship between cyanogenic capacity and water stress. We also examined whether variation in cyanogenic capacity affects phenolic biosynthesis because both pathways use phenylalanine as a substrate. Cyanogenic capacity in fully expanded leaves increased 70% in response to moderate water stress when N availability was high but only 30% when growth was N-limited. Absolute cyanogenic capacity also increased with increasing N supply. Total phenolics and condensed tannins decreased with increasing N supply, but these compounds were unaffected by water stress. We conclude that, under the influence of water stress, the enhanced demand for phenylalanine for cyanogenic glycoside biosynthesis can be sustained by enhanced shikimate pathway flux without affecting phenolic metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.