Abstract

In this work, the authors consider the communication network of a power substation, where multiple intelligent electronic devices (IEDs) transmit their delay sensitive control and monitoring messages to a common receiver over a wireless network; in the presence of a broadband jammer, which is capable of jamming multiple channels simultaneously. The objective of the IEDs is to successfully transmit their messages within a specified time, whereas the jammer wants to obstruct IED's transmission. A novel utility function is designed for the players, that addresses the time-critical nature of communication. Due to the conflicting interest of the IEDs and the jammer, they model the interaction between them as a repeated Bayesian zero-sum game, which also addresses the repeated interaction among the IEDs and the jammer, and the unavailability of exact information about the jammer. The equilibrium strategies for both the scenarios of perfect and imperfect monitoring are derived and verified through simulation results. Further, the performance of the proposed game model in various scenarios is thoroughly compared in the result section. Finally, the efficacy of the proposed defence strategies is tested in a practical communication network of a power substation under jamming, which is simulated in Optimised Network Engineering Tool (OPNET).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.