Abstract

BackgroundHerpes simplex 1 (HSV-1) causes various human clinical manifestations, ranging from simple cold sores to encephalitis. Innate immune cells recognize pathogens through Toll-like receptors (TLRs), thus initiating the immune response. Previously, we demonstrated that the immune response against HSV-1 is dependent on TLR2 and TLR9 expression and on IFN gamma production in the trigeminal ganglia (TG) of infected mice. In this work, we further investigated the cells, molecules, and mechanisms of HSV-1 infection control, especially those that are TLR-dependent.MethodsC57BL/6 wild-type (WT), TLR2−/−, TLR9−/−, and TLR2/9−/− mice were intranasally infected with HSV-1. On the viral peak day, the TG and brains were collected from mice and TLR expression was measured in the TG and brain and inducible nitric oxide synthase (iNOS) expression was measured in the TG by real-time PCR. Immunofluorescence assays were performed in mice TG to detect iNOS production by F4/80+ cells. Intraperitoneal macrophages nitric oxide (NO) production was evaluated by the Griess assay. WT, CD8−/−, RAG−/−, and iNOS−/− mice were intranasally infected in a survival assay, and their cytokine expression was measured in the TG by real-time PCR.ResultsInfected WT mice exhibited significantly increased TLR expression, compared with their respective controls, in the TG but not in the brain. TLR-deficient mice had moderately increased TLR expression in the TG and brain in compare with the non-infected animals. iNOS expression in the WT infected mice TG was higher than in the other groups with increased production by macrophages in the WT infected mice, which did not occur in the TLR2/9−/− mice. Additionally, the intraperitoneal macrophages of the WT mice had a higher production of NO compared with those of the TLR-deficient mice. The CD8−/−, RAG−/−, and iNOS−/− mice had 100% mortality after the HSV-1 infection compared with 10% of the WT mice. Cytokines were overexpressed in the iNOS−/− infected mice, while the RAG−/− mice were nearly unresponsive to the virus.ConclusionTLRs efficiently orchestrate the innate immune cells, eliciting macrophage response (with NO production by the macrophages), thereby controlling the HSV-1 infection through the immune response in the TG of mice.

Highlights

  • Herpes simplex 1 (HSV-1) causes various human clinical manifestations, ranging from simple cold sores to encephalitis

  • We demonstrate that macrophagemediated immunity against herpes simplex virus 1 (HSV-1) occurs efficiently through inducible nitric oxide synthase (iNOS) in trigeminal ganglia and appears to be organized by the initial activation of TLR2 and TLR9, which contributes to viral infection control

  • Expression of Toll-like receptors (TLRs) in HSV-1 infected mice trigeminal ganglia (TG) and brains occurs in a TLR-interdependent manner Inter-relationships between the TLR gene expression levels were already evidenced by previous research in which mice pre-stimulated with a TLR3 agonist, poli I:C, exhibit increased TLR2 expression in the brains and reduced mortality after the HSV-1 infection [41]

Read more

Summary

Results

Infected WT mice exhibited significantly increased TLR expression, compared with their respective controls, in the TG but not in the brain. TLR-deficient mice had moderately increased TLR expression in the TG and brain in compare with the non-infected animals. INOS expression in the WT infected mice TG was higher than in the other groups with increased production by macrophages in the WT infected mice, which did not occur in the TLR2/9−/− mice. The intraperitoneal macrophages of the WT mice had a higher production of NO compared with those of the TLR-deficient mice. The CD8−/−, RAG−/−, and iNOS−/− mice had 100% mortality after the HSV-1 infection compared with 10% of the WT mice. Cytokines were overexpressed in the iNOS−/− infected mice, while the RAG−/− mice were nearly unresponsive to the virus

Conclusion
Background
Materials and methods
Results and discussion
Schmutzhard E
Preston CM
28. Lima GK
31. Lima GK: TLR2 e TLR9

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.