Abstract

Return-Oriented Programming (ROP) is a sophisticated exploitation technique that is able to drive target applications to perform arbitrary unintended operations by constructing a gadget chain reusing existing small code sequences (gadgets) collected across the entire code space. In this paper, we propose to address ROP attacks from a different angle-shrinking available code space at runtime. We present ROPStarvation , a generic and transparent ROP countermeasure that defend against all types of ROP attacks with almost zero run-time overhead. ROPStarvation does not aim to completely stop ROP attacks, instead it attempts to significantly increase the bar by decreasing the possibility of launching a successful ROP exploit in reality. Moreover, shrinking available code space at runtime is lightweight that makes ROPStarvation practical for being deployed with high performance requirement. Results show that ROPStarvation successfully reduces the code space of target applications by 85%. With the reduced code segments, ROPStarvation decreases the probability of building a valid ROP gadget chain by 100% and 83% respectively, with the assumptions that whether the adversary knows the vulnerable applications are protected by ROPStarvation . Evaluations on the SPEC CPU2006 benchmark show that ROPStarvation introduces nearly zero (0.2% on average) run-time performance overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.