Abstract

Federated learning allows multiple users to collaboratively train a shared classification model while preserving data privacy. This approach, where model updates are aggregated by a central server, was shown to be vulnerable to poisoning backdoor attacks : a malicious user can alter the shared model to arbitrarily classify specific inputs from a given class. In this article, we analyze the effects of backdoor attacks on federated meta-learning , where users train a model that can be adapted to different sets of output classes using only a few examples. While the ability to adapt could, in principle, make federated learning frameworks more robust to backdoor attacks (when new training examples are benign), we find that even one-shot attacks can be very successful and persist after additional training. To address these vulnerabilities, we propose a defense mechanism inspired by matching networks , where the class of an input is predicted from the similarity of its features with a support set of labeled examples. By removing the decision logic from the model shared with the federation, the success and persistence of backdoor attacks are greatly reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.