Abstract
Malformation of mango (Mangifera indica L.) induced by Fusarium moniliforme var. subglutinans is a plant disease of international importance. The paper reports the downstream defence responses at the initial stage in a susceptible host (cultivar Amrapali) after treatment with biotic (isolated from the pathogen cell wall) (BEL) and abiotic (salicylic acid, SA) elicitors, and inoculation of vegetative buds with the pathogen (IVB). The SA was further tested to induce resistance in field trials. The inoculation and application of elicitors increased β-1, 3 glucanase that causes lysis of fungal hyphae by many folds. Hydrogen peroxide (H2O2) (active oxygen species) that induces hypersensitive cell death was reduced to the minimum level after treatment with BEL. The reduction of H2O2 in the inoculated vegetative buds was also substantial; however, comparatively less with SA treatment. Consequently, there was no hypersensitive cell death in the malformed mango. Salicylic acid that enhances H2O2 content by suppressing H2O2-degradation by catalase, increased marginally with the SA treatment and in the IVB, but reduced with the BEL. The reduction of SA in BEL-treated buds concomitantly reduced its H2O2 content. The activity of catalase, suppressor of resistance mechanism, was reduced in all the treatments, but the reduction was not enough to arrest H2O2-degradation. Magiferin (1, 3, 6, 7-tetrahdroxyxanthone C2-β-D glucoside), a defence metabolite of mango, increased substantially in all the treatments; maximum with the BEL. A pathogenesis-related (PR) protein of 20 KDa that resists symptom development appeared in all the treatments except the control. But light colour of the spots for the PR-protein indicated low protein accumulation. The maximum accumulation was with the IVB followed by SA and BEL treatments. The amount of total protein reduced considerably in all the treatments. The SA treatment on healthy plants failed to induce defence against malformation. Contrarily, the treatment on malformed seedlings restored normal growth within two months. Hence, SA acted better over the infected plants in presence of the pathogen. Thus, a signal transduction system involving SA and H2O2 remained nonfunctional and enough defence chemicals could not be synthesised. Defence genes that produce phenolic and β-1, 3 glucanase, however, became activated and saved the plants from death although could not prevent symptom manifestations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.