Abstract

Pollen plays two important roles in angiosperm reproduction, serving as a vehicle for the plant's male gametes, but also, in many species, as a lure for pollen-feeding animals. Despite being an important food source for many pollinators, pollen often contains compounds with known deterrent or toxic properties, as documented in a growing number of studies. Here we review these studies and discuss the role of pollen defensive compounds in the coevolutionary relationship between plants and bees, the preeminent consumers of pollen. Next, we evaluate three hypotheses that may explain the existence of defensive compounds in pollen. The pleiotropy hypothesis, which proposes that defensive compounds in pollen merely reflect physiological spillover from other plant tissues, is contradicted by evidence from several species. Although plants may experience selection to defend pollen against poor-quality pollinators, we also find only partial support for the protection-against-pollen-collection-hypothesis. Finally, pollen defences might protect pollen from colonisation by antagonistic microorganisms (antimicrobial hypothesis), although data to evaluate this idea are scarce. Further research on the effects of pollen defensive compounds on pollinators, pollen thieves, and pollen-colonising microbes will be needed to understand why many plants have chemically defended pollen, and the consequences of those defences for pollen consumers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.