Abstract

Dynamics and statics of defects interaction among crack, dislocations and twin boundary (TB) observed in magnesium were investigated using molecular dynamics and elasticity with the complex stress functions to clarify the effect of long-range elastic stress field. An atomic model containing a crack parallel to (10-11) TB was gradually elongated under KI-mode tension by molecular dynamics simulations. Changing the distance between the crack and the TB, four kinds of crack propagation manners were observed, one of which showed the path transition from the crack to the TB itself by shielding effect of piled-up dislocations around the crack tip. The stress intensity factor of the nanosized crack in bulk is 0.28 MPam1/2, which is smaller than that of crack on the TB. The shielding effect due to the piled-up dislocations drastically decreases stress concentration around the crack tip and the stress intensity factor diminishes down to the 0.22, and thus the crack nucleated from the void nucleation and coalescence on the TB was propagated instead. The elastic stress distributions obtained by the superposition of some complex stress functions suggest that the stress field around the crack tip is disturbed by the localized stress due to the TB in the case of crack closest to TB and also by the back stress due to the piled-up dislocations in the case of crack far from TB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call