Abstract

Micro-Raman spectroscopy, X-band electron paramagnetic resonance (EPR) spectroscopy, and UV-visible optical absorption spectroscopy were used to study the damage production in cerium dioxide (CeO2) single crystals by electron irradiation for three energies (1.0, 1.4, and 2.5 MeV). The Raman-active T2g peak was left unchanged after 2.5-MeV electron irradiation at a high fluence. This shows that no structural modifications occurred for the cubic fluorite structure. UV-visible optical absorption spectra exhibited a characteristic sub band-gap tail for 1.4-MeV and 2.5-MeV energies, but not for 1.0 MeV. Narrow EPR lines were recorded near liquid-helium temperature after 2.5-MeV electron irradiation; whereas no such signal was found for the virgin un-irradiated crystal or after 1.0-MeV irradiation for the same fluence. The angular variation of these lines in the {111} plane revealed a weak g-factor anisotropy assigned to Ce3+ ions (with the 4f1 configuration) in a high-symmetry local environment. It is concluded that Ce3+ ions may be produced by a reduction resulting from the displacement damage process. However, no evidence of F+ or F0 center or hole center formation due to irradiation was found from the present EPR and optical absorption spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.