Abstract

AbstractThe influence of the preparation conditions in hot wire chemical vapour deposition (HWCVD) on the electronic properties of microcrystalline silicon is investigated in view of application of the material in thin film solar cells. Poor grain boundary passivation, as a result of hydrogen etching at strong hydrogen dilution of the process gas or thermal desorption of hydrogen at high deposition temperatures, is considered a main obstacle for material optimisation. We conclude that optimum μc-Si:H solar cell material, both from HW-CVD and from plasma enhanced CVD, is not necessarily obtained with largest grain sizes and apparent highest crystalline content, but rather by a material prepared under conditions which yield a compact morphology with an effective grain boundary passivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call