Abstract

Radiation damage is generated in a controlled manner by MeV ion implantation of Si+ and He+ ions in c-Si and studied by ultrafast laser pulses on a subpicosecond time scale. In Si+-implanted samples the amorphization of the sample is achieved at sufficiently high doses, while He implants only produce a very low level of damage. Defects are investigated after implantation by measuringex situ the change of reflectivity caused by a high density of electron-hole plasma generated by femtosecond laser pulses. The plasma decay time decreases as a function of the implantation dose in both Si- and He-implanted samples, reaching a minimum value of ≈1 ps. It is observed that the saturation of the decay time is not related to the amorphization of the sample, but rather to the formation of simple defects produced during ion implantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.