Abstract

Phosphatidylcholine (PC) is the major membrane phospholipid in most eukaryotic cells. Bi-allelic loss of function variants in CHKB, encoding the first step in the synthesis of PC, is the cause of a rostrocaudal muscular dystrophy in both humans and mice. Loss of sarcolemma integrity is a hallmark of muscular dystrophies; however, how this occurs in the absence of choline kinase function is not known. We determine that in Chkb -/- mice there is a failure of the α7β1 integrin complex that is specific to affected muscle. We observed that in Chkb -/- hindlimb muscles there is a decrease in sarcolemma association/abundance of the PI(4,5)P2 binding integrin complex proteins vinculin, and α-actinin, and a decrease in actin association with the sarcolemma. In cells, pharmacological inhibition of choline kinase activity results in internalization of a fluorescent PI(4,5)P2 reporter from discrete plasma membrane clusters at the cell surface membrane to cytosol, this corresponds with a decreased vinculin localization at plasma membrane focal adhesions that was rescued by overexpression of CHKB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call