Abstract
Donaldson-Thomas theory on a Calabi-Yau can be described in terms of a certain sixdimensional cohomological gauge theory. We introduce a certain class of defects in this gauge theory which generalize surface defects in four dimensions. These defects are associated with divisors and are defined by prescribing certain boundary conditions for the gauge fields. We discuss generalized instanton moduli spaces when the theory is defined with a defect and propose a generalization of Donaldson-Thomas invariants. These invariants arise by studying torsion free coherent sheaves on Calabi-Yau varieties with a certain parabolic structure along a divisor, determined by the defect. We discuss the case of the affine space as a concrete example. In this case the moduli space of parabolic sheaves admits an alternative description in terms of the representation theory of a certain quiver. The latter can be used to compute the invariants explicitly via equivariant localization. We also briefly discuss extensions of our work to other higher dimensional field theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.