Abstract
In the field of automatic optical inspection, it is imperative to measure the defects on spherical optical surfaces. So a novel spherical surface defect evaluation system is established in this paper to evaluate defects on optical spheres. In order to ensure the microscopic scattering dark-field imaging of optical spheres with different surface shape and radius of curvature, illumination with variable aperture angle is employed. In addition, the scanning path of subapertures along the parallels and meridians is planned to detect the large optical spheres. Since analysis shows that the spherical defect information could be lost in the optical imaging, the three-dimensional correction based on a pin-hole model is proposed to recover the actual spherical defects from the captured two-dimensional images. Given the difficulty of subaperture stitching and defect feature extraction in three-dimensional (3D) space after the correction, the 3D subapertures are transformed into a plane to be spliced through geometric projection. Then, methods of the surface integral and calibration are applied to quantitatively evaluate the spherical defects. Furthermore, the 3D panorama of defect distribution on the spherical optical components can be displayed through the inverse projective reconstruction. Finally, the evaluation results are compared with the OLYMPUS microscope, testifying to the micrometer resolution, and the detection error is less than 5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.