Abstract
Graphitic carbon nitride nanosheet (CNS) represents an attractive candidate for solar fuel production. However, the abundant defects in CNS lead to serious charge recombination and limit the photocatalytic performance. Herein, the synthesis of a CNS-covalent organic framework (CNS-COF) nanosheet composite is presented for the first time. CNS with significantly reduced defects is first obtained by rationally tuning the thermal exfoliation conditions of bulk carbon nitride. Subsequent modification of the CNS with trace COF nanosheet through chemical imine bonding can not only passivate the surface termination of carbon nitride in the boundary region, but also establish strong electronic coupling between these two components. As a consequence, enhanced charge separation and photocatalytic activity are realized on the resulting CNS-COF nanosheet composite. Under optimum conditions, hydrogen is evolved at a rate of 46.4 mmol g-1 h-1 . This corresponds to an apparent quantum efficiency of 31.8% at 425 nm, which is among the best values ever reported for carbon nitride-based materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.