Abstract

AbstractWe have studied defects introduced in n-GaN during 25 keV hydrogen and 40 keV He implantation using deep level transient spectroscopy (DLTS). These measurements revealed that 25 keV hydrogen implantation introduces a complex set of electron traps, of which most are different to the defects observed after high-energy (MeV) electron and proton implantation. At least three of the defects detected after 25 keV proton implantation exhibit a metastable character in that they can be reproducibly removed and re-introduced during reverse and zero bias anneal cycles. Isochronal and isothermal annealing experiments yielded low activation energies of approximately 0.1 – 0.2 eV for both processes. By comparison, 40 keV He ion implantation introduced the same metastable defects, but in different relative concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call