Abstract

Atomic-level simulations are used to determine defect production, cascade-overlap effects, and defect migration energies in SiC. Energetic C and Si collision cascades primarily produce single interstitials, mono-vacancies, antisite defects, and small defect clusters, while amorphous clusters are produced within 25% of Au cascades. Cascade overlap results in defect stimulated cluster growth that drives the amorphization process. The good agreement of disordering behavior and changes in volume and elastic modulus obtained computationally and experimentally provides atomic-level interpretation of experimentally observed features. Simulations indicate that close-pair recombination activation energies range from 0.24 to 0.38 eV, and long-range migration energies for interstitials and vacancies are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.