Abstract
In this work, g-C3N4−x/BiOCl/WO2.92 heterojunction with “N-O” vacancies was prepared using NaBiO3 and WCl6 as raw materials and non-metal plasma of WO2.92 grew in-situ on the surface of BiOCl, resulting in the enhanced photocatalytic NO deep oxidation. XPS tests and DFT calculation indicated the formation of internal electric fields from g-C3N4−x to BiOCl, BiOCl to WO2.92, which induced the transition from Ⅱ-Ⅱ-type to double Z-scheme hetero-structure. High separation efficiency, prolong lifetime and strong redox ability of photo-generated electron-hole pairs were simultaneously achieved due to the charge capture effect of defects and double Z-scheme mechanism. Therefore, g-C3N4−x/BiOCl/WO2.92 exhibited the significantly increased NO removal rates from 21.17% (BiOCl/WO2.92) and 36.52% (g-C3N4−x) to 68.70% and the main oxidation product of NO was NO3−. This study revealed that the carrier dynamics of heterojunction photocatalysts could be optimized by the synergistic effect of defects and internal electric fields to achieve photocatalytic NO deep oxidization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.