Abstract

The conduction mechanisms in cerium-doped yttrium aluminum garnet (Ce:YAG) have been studied as a function of temperature and PO2. ac conductivity and ionic transference measurements show that Ce:YAG is a mixed ionic-electronic conductor with an ionic conductivity characterized by an activation energy of 2.3 eV. A derived thermal band-gap energy of 6.1 eV compares favorably with the optically measured band gap. Conductivity and transference measurements support a defect model with a fixed number of doubly-ionized oxygen vacancies as the primary defect; the energy to produce such vacancies is calculated to be 7.8 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.