Abstract
A one-dimensional zinc ferrite (ZnFe2O4) nanorod photoanode was prepared by a simple solution method on the F-doped tin oxide glass substrate. Thermal treatment under a hydrogen or vacuum atmosphere improved the photoelectrochemical water oxidation activity up to 20 times. The various physical characterization techniques used revealed that oxygen vacancies were created by the treatments in the near surface region, which increased the donor density and passivated the surface states. Hydrogen treatment was more effective and it was important to find optimum treatment conditions to take advantage of the positive role of oxygen vacancy as a source of electron donors and avoid its negative effect as electron trap sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.