Abstract
Anelectrochemical aptsensor for deoxynivalenol determination was successfully designed and constructed based on a defective bimetallic organic framework (denoted as ZrTi-MOF). The high porosity, large specific surface area, several structural defects, mixed metal clusters, and rich functionality of ZrTi-MOF markedly enhanced its electrochemical activity and facilitated the aptamer immobilization. As a result, the ZrTi-MOF-based aptasensor shows high sensitivity to detect deoxynivalenol via specific recognition between aptamer and deoxynivalenol, as well as the formation of aptamer-deoxynivalenol complex. On this basis, the developed ZrTi-MOF-based impedimetric aptasensor showed a low detection limit of 0.24fgmL-1 for deoxynivalenol determination in the deoxynivalenol concentration range 1fgmL-1-1ngmL-1 under optimized conditions, which also exhibited satisfactory selectivity, stability, reproducibility, and regenerability. Furthermore, determinationof deoxynivalenol was achieved in bread and wheat flour samples via the developed ZrTi-MOF-based deoxynivalenol aptasensor. The result from this study showed that the ZrTi-MOF-based electrochemical aptasensor could become a promising strategy for detecting deoxynivalenol in foodstuffs in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.