Abstract

Rats chronically fed ethanol for 3 weeks presented a marked decreased in total hepatic Mg(2+) content and required approximately 12 days to restore Mg(2+) homeostasis upon ethanol withdrawal. This study was aimed at investigating the mechanisms responsible for the EtOH-induced delay. Hepatocytes from rats fed ethanol for 3 weeks (Lieber-De Carli diet-chronic model), rats re-fed a control diet for varying periods of time following ethanol withdrawal, and age-matched control rats fed a liquid or a pellet diet were used. As acute models, hepatocytes from control animals or HepG2 cells were exposed to varying doses of ethanol in vitro for 8 minutes. Hepatocytes from ethanol-fed rats presented a marked inhibition of Mg(2+) accumulation and a defective translocation of PKCepsilon to the cell membrane. Upon ethanol withdrawal, 12 days were necessary for PKCepsilon translocation and Mg(2+) accumulation to return to normal levels. Exposure of control hepatocytes or HepG2 cells to a dose of ethanol as low as 0.01% for 8 minutes was already sufficient to inhibit Mg(2+) accumulation and PKCepsilon translocation for more than 60 minutes. Also in this model, recovery of Mg(2+) accumulation was associated with restoration of PKCepsilon translocation. The use of specific antisense in HepG2 cells confirmed the involvement of PKCepsilon in modulating Mg(2+) accumulation. Translocation of PKCepsilon isoform to the hepatocyte membrane is essential for Mg(2+) accumulation to occur. Both acute and chronic ethanol administrations inhibit Mg(2+) accumulation by specifically altering PKCepsilon translocation to the cell membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call