Abstract

Bruton's tyrosine kinase (Btk), a member of the Tec family of tyrosine kinases, plays an important role in the differentiation and activation of B cells. Mutations affecting Btk cause immunodeficiency in both humans and mice. In this study we set out to investigate the potential role of Btk in Toll-like receptor 9 (TLR9) activation and the production of pro-inflammatory cytokines such as interleukin (IL)-6, tumour necrosis factor (TNF)-alpha and IL-12p40. Our data show that Btk-deficient B cells respond more efficiently to CpG-DNA stimulation, producing significantly higher levels of pro-inflammatory cytokines but lower levels of the inhibitory cytokine IL-10. The quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis presented in this work shows that mRNA production of one of the important new members of the IL-12 family, IL-27, was significantly increased in Btk-deficient B cells after CpG-DNA stimulation. In this study, we demonstrate significant differences in CpG responsiveness between transitional 1 (T1) and T2 B cells for survival and maturation. Furthermore, TLR9 expression, measured both as protein and as mRNA, was increased in Btk-defective cells, especially after TLR9 stimulation. Collectively, these data provide evidence in support of the theory that Btk regulates both TLR9 activation and expression in mouse splenic B cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.