Abstract
Reactive oxygen species (ROS) have many functions in aerobic organisms. High levels of ROS can have a negative impact on plant cells leading to senescence and cell death. ROS accumulates in cells subjected to environmental stress and induces a cellular response to this external stimulus. To protect cells from the negative impacts of excess ROS, plants also possess a ROS detoxifying system to maintain normal ROS levels. The regulation of ROS levels is particularly important as ROS also functions as an important signal molecule and can regulate plant growth by modulating gene expression. Despite the functional importance of ROS signaling, little is known about the molecular mechanisms involved in the regulation of gene expression through ROS. Therefore, the present study investigated the effect of hydrogen peroxide (H2O2), a ROS compound, on cell cycle-related gene expression. Gene expression analyses coupled with microdissected sections of the developmental zone of Arabidopsis root tips revealed that H2O2 affects the expression of cell cycle-related genes. Additionally, ROS scavenging enzymes were found to play an important role in the root growth phenotype induced by H2O2. Specifically, root growth inhibition by H2O2 was diminished in transgenic Arabidopis overexpressing peroxidase but increased in a catalase2 (cat2) mutant. The strong root growth inhibition observed in the cat2 mutant upon H2O2 treatment indicated that CAT2 has an essential role in maintaining root meristem activity in the presence of oxidative stress. Overall, these results confirm that ROS function not only as stress-related compounds but that they also function as signaling molecules to regulate the progression of the cell cycle in root tips.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.