Abstract

We have previously shown that DNA repair of oxidized bases (either purines or pyrimidines) is inefficient in cells from patients with Cockayne syndrome (cs), a rare developmental and neurological genetic disorder. Here, we show for the first time that resolution of ionizing radiation (IR)-induced pH2AX foci, an indicator of DNA double-strand breaks, is significantly delayed in IR-treated cells belonging to the B complementation group of cs (csb). Using alkaline single-cell gel electrophoresis, which predominantly detects single-strand breaks, we further demonstrate elevated DNA breakage in csb cells early after irradiation. Both the delayed resolution of pH2AX foci and the early DNA breakage of csb cells were partially complemented by expression of wild-type CSB protein. Hence, the csb mutation impairs resolution of pH2AX foci and causes DNA fragility, broadening the spectrum of lesions whose processing is altered in this syndrome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.