Abstract
Replication of damaged DNA is suspected to play an important role in cell cycle, genetic stability, and survival pathways. Using psoralen photoaddition as prototype DNA damage and the renaturing agarose gel electrophoresis technique to measure DNA cross-linking in individual genes, Vos and Hanawalt previously observed efficient bypass replication of psoralen monoadducts in human genes (J.-M. H. Vos and P. C. Hanawalt, Cell 50:789-799, 1987). To understand the mechanism of bypass replication in human cells, mutants affected in such a process would be useful. We now report that cells from individuals suffering from the hereditary recessive syndrome xeroderma pigmentosum variant (XPV) are hypersensitive to killing induced by photoactivated psoralen. In addition, analysis of psoralen-mediated DNA cross-linking in the rRNA genes indicated that although repair of psoralen adducts was similar to that of normal individuals, XPV cells were markedly deficient in the ability to bypass psoralen adducts during replication; in comparison with normal cells, approximately half as many monoadducts were bypassed during replication in XPV cells. Furthermore, in contrast to normal cells, replication of interstrand cross-links was not detected in XPV. This is the first demonstration of a deficiency in bypass replication detected at the gene-specific level in vivo. A model involving a strand-specific defect in recombinational bypass in XPV is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.