Abstract

A method is described for the isolation of thermoinducible defective Mu lysogens. Four of these defective lysogens were studied more extensively. By marker-rescue experiments it was shown that the strain harbouring the smallest defective prophage contains the immunity gene cts and the genes A and B; the strain with the largest defective prophage still contains all the known essential genes of Mu, A to S (see Fig. 1). After induction at 43 degrees C all the defective lysogens are killed, whereas no lysis occurs. Although in all the thermoinducible defective lysogens the A and B gene products could be demonstrated by complementation, these gene products are not responsible for the killing of the host, suggesting the presence of another unknown early gene product of Mu. The level of complementation of a mutation in gene A is reduced by the presence in the cell of another defective Mu prophage containing the "G" beta part of Mu. This effect on A gene complementation is markedly enhanced when the defective prophage, containing the "G" beta part, is located on an episome instead of on the chromosome. Complementation of late genes by a defective prophage located on the chromosome, is extremely low or undetectable. A stimulation of complementation by a factor of 10 to 40 was found when the same defective prophage was situated on a F' factor. A possible explanation for this "episome" effect will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.