Abstract

Currently, there is tremendous interest in the discovery of new and improved photothermal agents for near-infrared (NIR)-driven cancer therapy. Herein, a series of novel photothermal agents, comprising copper nanoparticles supported on defective porous carbon polyhedra are successfully prepared by heating a Cu-BTC metal-organic framework (MOF) precursor at different temperatures (t) in the range 400-900 °C under an argon atmosphere. The copper nanoparticle size and carbon defect concentration in the obtained products (denoted herein as Cu@CPP-t) increase with synthesis temperature, thus imparting the Cu@CPP-t samples with distinct NIR absorption properties and photothermal heating responses. The Cu@CPP-800 sample shows a remarkable photothermal conversion efficiency of 48.5% under 808 nm laser irradiation, representing one of the highest photothermal efficiencies yet reported for a carbon-based photothermal agent. In vivo experiments conducted with tumor bearing nude Balb/c mice confirm the efficacy of Cu@CPP-800 as a very promising NIR-driven phototherapy agent for cancer treatment. Results encourage the wider use of MOFs as low cost precursors for the synthesis of carbon-supported metal nanoparticle composites for photothermal therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.