Abstract

X-linked lymphoproliferative disease (XLP) is characterized by a selective immune deficiency to EBV. The molecular basis of XLP has been attributed to mutations of signaling lymphocytic activation molecule-associated protein, an intracellular molecule known to associate with the lymphocyte-activating surface receptors SLAM and 2B4. We have identified a single nucleotide mutation in SLAM-associated protein that affects the NK cell function of males carrying the mutated gene. In contrast to normal controls, both NK and lymphokine-activated killer cell cytotoxicity was significantly reduced in two XLP patients. In addition to decreased baseline cytotoxicity, ligation of 2B4 significantly augmented NK lytic function in normal controls but failed to enhance the cytotoxicity of NK cells from XLP patients. These findings suggest that association of SAP with 2B4 is necessary for optimal NK/lymphokine-activated killer cytotoxicity and imply that alterations in SAP/2B4 signaling contribute to the immune dysfunction observed in XLP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.