Abstract

In order to resolve the poor antibiotics rejection and serious fouling of ultrafiltration (UF) membrane during municipal wastewater reclamation, a novel anodic membrane (defective UiO-66 (D-UiO-66)/Graphite/Polyvinylidene fluoride (PVDF)) with high pure water flux (596.1 L•h − 1•m − 2•bar−1) was fabricated by incorporating defective zirconium based metal-organic framework (D-UiO-66) and conductive graphite particles into PVDF matrix and applied in the coupling of electro-oxidation and membrane filtration process. Compared to the other anodic membranes (i.e., Graphite/PVDF and UiO-66/Graphite/PVDF), D-UiO-66/Graphite/PVDF possesses superior anti-fouling and self-cleaning abilities (flux recovery=100%, model foulant: bovine serum albumin) in both intermittent and continuous supply of electric field under current density of 0.01 mA/cm2; moreover, efficient antibiotics (tetracycline, norfloxacin, tylosin and sulfamethoxazole) removal (> 96.6%) and bactericidal efficiency against E. coli and S. aureus (100%) were achieved simultaneously without the addition of chemical reagents due to the higher electrocatalytic activity of anodic membrane for oxidation of pollutants by •OH and •O2– free radicals. Three degradation pathways of antibiotics were proposed and the self-cleaning mechanism of membrane was dominated by the synergy of the partial mineralization and the reduced fouling potential of foulants after oxidation as revealed by the increase in hydrophilicity, and decrease in negative charge and molecular weight. The fabricated membrane also presents excellent electrochemical stability, separation and self-cleaning performance for treatment of municipal secondary effluent during long-term filtration with low electric energy consumption, which is promising in wastewater reclamation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.