Abstract

Obesity arises on defective neuroendocrine pathways that increase energy intake and reduce mitochondrial metabolism. In the metabolic syndrome, mitochondrial dysfunction accomplishes defects in fatty acid oxidation and reciprocal increase in triglyceride content with insulin resistance and hyperglycemia. Mitochondrial inhibition is attributed to reduced biogenesis, excessive fission, and low adipokine-AMP-activated protein kinase (AMPK) level, but lateness of the respiratory chain contributes to perturbations. Considering that nitric oxide (NO) binds cytochrome oxidase and inhibits respiration, we explored NO as a direct effector of mitochondrial dysfunction in the leptin-deficient ob/ob mice. A remarkable three- to fourfold increase in neuronal nitric oxide synthase (nNOS) expression and activity was detected by western blot, citrulline assay, electronic and confocal microscopy, flow cytometry, and NO electrode sensor in mitochondria from ob/ob mice. High NO reduced oxygen uptake in ob/ob mitochondria by inhibition of complex IV and nitration of complex I. Low metabolic status restricted β-oxidation in obese mitochondria and displaced acetyl-CoA to fat synthesis; instead, small interference RNA nNOS caused a phenotype change with fat reduction in ob/ob adipocytes. We evidenced that leptin increases mitochondrial respiration and fat utilization by potentially inhibiting NO release. Accordingly, leptin administration to ob/ob mice prevented nNOS overexpression and mitochondrial dysfunction in vivo and rescued leptin-dependent effects by matrix NO reduction, whereas leptin-Ob-Rb disruption increased the formation of mitochondrial NO in control adipocytes. We demonstrated that in ob/ob, hypoleptinemia is associated with critically low mitochondrial p-AMPK and that, oppositely to p-Akt2, p-AMPK is a negative modulator of nNOS. Thereby, defective leptin-AMPK pathway links mitochondrial NO to obesity with complex I syndrome and dysfunctional mitochondria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.