Abstract
Homozygous Belgrade rats have an inherited hypochromic, microcytic anemia that is due to impaired iron transport into immature erythrocytes. There is also evidence for abnormal iron transport in other tissues such as the intestine. This study was aimed at investigating the intestinal defect in rats that had been fed diets for 12 days that are normal, low, or high in iron. The duodenal uptake, transfer, and absorption of Fe(III)-nitrilotriacetate and Fe(II)-ascorbate were studied using in vivo tied-off gut sacs in genetically normal rats and in heterozygous or homozygous Belgrade rats. In normal and heterozygous Belgrade rats, the handling of Fe(III) and Fe(II) was similar; uptake, transfer, and absorption of Fe(III) and Fe(II) changed inversely with the iron content of the diet. In contrast, in homozygous Belgrade rats the uptake of both Fe(III) and Fe(II) was markedly reduced and absorption of Fe(III) did not change when animals were fed an iron-deficient diet. Since absorption of Fe(II) was similar to Fe(III), there is no evidence that the defect in iron absorption is due to failure of a mechanism for reduction of Fe(III). The lowered uptake of Fe(III) and Fe(II) in homozygous Belgrade rats probably involves a defective iron carrier associated with the microvillous membrane of the duodenum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.