Abstract

Defective interfering particles (DIPs) have been found for many important viral pathogens and it is believed that most viruses generate DIPs. This article reviews the current knowledge of the generation and amplification of DIPs, which possess deletions in the viral genome but retain the ability to replicate in the presence of a complete helper virus. In addition, mechanisms are discussed by which DIPs interfere with the replication of their helper virus leading to the production of mainly progeny DIPs by coinfected cells. Even though DIPs cannot replicate on their own, they are biologically active and it is well known that they have a huge impact on virus replication, evolution, and pathogenesis. Moreover, defective genomes are potent inducers of the innate immune response. Yet, little attention has been paid to DIPs in recent years and their impact on biotechnological products such as vaccines and viral vectors remains elusive in most cases. With a focus on influenza virus, this review demonstrates that DIPs are important for basic research on viruses and for the production of viral vaccines and vectors. Reducing the generation and/or amplification of DIPs ensures reproducible results as well as high yields and consistent product quality in virus production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call