Abstract

The patch-clamp technique was used to investigate the effects of the isoflavone genistein on disease-causing mutations (G551D and DeltaF508) of the cystic fibrosis transmembrane conductance regulator (CFTR). In HeLa cells recombinantly expressing the trafficking-competent G551D-CFTR, the forskolin-stimulated Cl currents were small, and average open probability of G551D-CFTR was P(o) = 0.047 +/- 0.019. Addition of genistein activated Cl currents approximately 10-fold, and the P(o) of G551D-CFTR increased to 0.49 +/- 0.12, which is a P(o) similar to wild-type CFTR. In cystic fibrosis (CF) epithelial cells homozygous for the trafficking-impaired DeltaF508 mutation, forskolin and genistein activated Cl currents only after 4-phenylbutyrate treatment. These data suggested that genistein activated CFTR mutants that were present in the cell membrane. Therefore, we tested the effects of genistein in CF patients with the G551D mutation in nasal potential difference (PD) measurements in vivo. The perfusion of the nasal mucosa of G551D CF patients with isoproterenol had no effect; however, genistein stimulated Cl-dependent nasal PD by, on average, -2.4 +/- 0.6 mV, which corresponds to 16.9% of the responses (to beta-adrenergic stimulation) found in healthy subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.