Abstract

The blood-brain barrier (BBB) comprises three cell types: brain capillary endothelial cells (BECs), astrocytes, and pericytes. Abnormal interaction among these cells may induce BBB dysfunction and lead to cerebrovascular diseases. The stroke-prone spontaneously hypertensive rat (SHRSP) harbors a defective BBB, so we designed the present study to examine the role of these three cell types in a functional disorder of the BBB in SHRSP in order to elucidate the role of these cells in the BBB more generally. To this end, we employed a unique in vitro model of BBB, in which various combinations of the cells could be tested. The three types of cells were prepared from both SHRSPs and Wistar Kyoto rats (WKYs). They were then co-cultured in various combinations to construct in vitro BBB models. The barrier function of the models was estimated by measuring transendothelial electrical resistance and the permeability of the endothelial monolayer to sodium fluorescein. The in vitro models revealed that (1) BECs from SHRSPs had an inherent lower barrier function, (2) astrocytes of SHRSPs had an impaired ability to induce barrier function in BECs, although (3) both pericytes and astrocytes of SHRSPs and WKYs could potentiate the barrier function of BECs under co-culture conditions. Furthermore, we found that claudin-5 expression was consistently lower in models that used BECs and/or SHRSP astrocytes. These results suggested that defective interaction among BBB cells-especially BECs and astrocytes-was responsible for a functional disorder of the BBB in SHRSPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call