Abstract

Cancers heavily threaten human life; therefore, a high-accuracy diagnosis is vital to protect human beings from the suffering of cancers. While biopsies and imaging methods are widely used as current technologies for cancer diagnosis, a new detection platform by metabolic analysis is expected due to the significant advantages of fast, simple, and cost-effectiveness with high body tolerance. However, the signal of molecule biomarkers is too weak to acquire high-accuracy diagnosis. Herein, precisely engineered metal-organic frameworks for laser desorption/ionization mass spectrometry, allowing favorable charge transfer within the molecule-substrate interface and mitigated thermal dissipation by adjusting the phonon scattering with metal nodes, are developed. Consequently, a surprising signal enhancement of ≈10 000-fold is achieved, resulting in diagnosis of three major cancers (liver/lung/kidney cancer) with area-under-the-curve of 0.908-0.964 and accuracy of 83.2%-90.6%, which promises a universal detection tool for large-scale clinical diagnosis of human cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call