Abstract
Transcription factor USF is a ubiquitously expressed member of the helix-loop-helix family of proteins. It binds with high affinity to E-box elements and, through interaction with coactivators, aids in the formation of transcription complexes. Previous work demonstrated that USF regulates genes during erythroid differentiation, including HoxB4 and beta-globin. Here, we show that the erythroid cell-specific expression of a dominant-negative mutant of USF, A-USF, in transgenic mice reduces the expression of all beta-type globin genes and leads to the diminished association of RNA polymerase II with locus control region element HS2 and with the beta-globin gene promoter. We further show that the expression of A-USF reduces the expression of several key erythroid cell-specific transcription factors, including EKLF and Tal-1. We provide evidence demonstrating that USF interacts with known regulatory DNA elements in the EKLF and Tal-1 gene loci in erythroid cells. Furthermore, A-USF-expressing transgenic mice exhibit a defect in the formation of CD71(+) progenitor and Ter-119(+) mature erythroid cells. In summary, the data demonstrate that USF regulates globin gene expression indirectly by enhancing the expression of erythroid transcription factors and directly by mediating the recruitment of transcription complexes to the globin gene locus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.