Abstract

The tumor suppressive activities of the Kip-family of cdk inhibitors often go beyond their role in regulating the cell cycle. Here, we demonstrate that p27 enhances Rad51 accumulation during repair of double-strand DNA breaks. Progression of PDGF-induced oligodendrogliomas was accelerated in mice lacking the cyclin-cdk binding activities of p27kip1. Cell lines were developed from RCAS-PDGF infection of nestin-tv-a brain progenitor cells in culture. p27 deficiency did not affect cell proliferation in early passage cell lines; however, the absence of p27 affected chromosomal stability. In p27 deficient cells, the activation of Atm and Chk2, and the accumulation of γH2AX was unaffected compared to wild type cells, and the number of phospho-histone H3 staining mitotic cells was decreased, consistent with a robust G2/M checkpoint activation. However, the percentage of Rad51 foci positive cells was decreased, and the kinase activity that targets the C-terminus of BRCA2, regulating BRCA2/Rad51 interactions, was increased in lysates derived from p27 deficient cells. Increased numbers of chromatid breaks in p27 deficient cells that adapted to the checkpoint were also observed. These findings suggest that Rad51-dependent repair of double stranded breaks was hindered in p27 deficient cells, leading to chromosomal instability, a hallmark of cancers with poor prognosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call