Abstract
Retinoschisin is a 24-kDa discoidin domain-containing protein that is secreted from photoreceptor and bipolar cells as a large disulfide-linked multisubunit complex. It functions as a cell adhesion protein to maintain the cellular organization and synaptic structure of the retina. Over 125 different mutations in the RS1 gene are associated with X-linked juvenile retinoschisis, the most common form of early onset macular degeneration in males. To identify molecular determinants important for retinoschisin structure and function and elucidate molecular and cellular mechanisms responsible for X-linked juvenile retinoschisis, we have analyzed the expression, protein folding, disulfide-linked subunit assembly, intracellular localization, and secretion of wild-type retinoschisin, 15 Cys-to-Ser variants and 12 disease-linked mutants. Our studies, together with molecular modeling of the discoidin domain, identify Cys residues involved in intramolecular and intermolecular disulfide bonds essential for protein folding and subunit assembly. We show that misfolding of the discoidin domain, defective disulfide-linked subunit assembly, and inability of retinoschisin to insert into the endoplasmic reticulum membrane as part of the protein secretion process are three primary mechanisms responsible for the loss in the function of retinoschisin as a cell adhesion protein and the pathogenesis of X-linked juvenile retinoschisis.
Highlights
The RS1 gene responsible for X-linked juvenile retinoschisis (XLRS) was identified by positional cloning and found to encode a 24-kDa protein called retinoschisin, or RS1 [6], that is secreted from photoreceptor and bipolar cells as a disulfide-linked oligomeric complex [7, 8]
We show that misfolding of the discoidin domain, defective disulfide-linked subunit assembly, and inability of retinoschisin to insert into the endoplasmic reticulum membrane as part of the protein secretion process are three primary mechanisms responsible for the loss in the function of retinoschisin as a cell adhesion protein and the pathogenesis of X-linked juvenile retinoschisis
Retinoschisin plays a crucial role in retinal cell adhesion and XLRS, little is known about molecular determinants that contribute to its structure and function or molecular mechanisms responsible for the pathogenesis of XLRS
Summary
The RS1 gene responsible for XLRS was identified by positional cloning and found to encode a 24-kDa protein called retinoschisin, or RS1 [6], that is secreted from photoreceptor and bipolar cells as a disulfide-linked oligomeric complex [7, 8]. To identify molecular determinants important for retinoschisin structure and function and elucidate molecular and cellular mechanisms responsible for X-linked juvenile retinoschisis, we have analyzed the expression, protein folding, disulfide-linked subunit assembly, intracellular localization, and secretion of wild-type retinoschisin, 15 Cys-to-Ser variants and 12 disease-linked mutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.