Abstract

PurposeWe sought to determine if sympathetic denervation of choroid impairs choroidal blood flow (ChBF) regulation and harms retina.MethodsRats received bilateral superior cervical ganglionectomy (SCGx), which depleted choroid of sympathetic but not parasympathetic innervation. The flash-evoked scotopic ERG and visual acuity were measured 2 to 3 months after SCGx, and vasoconstrictive ChBF baroregulation during high systemic arterial blood pressure (ABP) induced by LNAME was assessed by laser Doppler flowmetry (LDF). Eyes were harvested for histologic evaluation.ResultsChBF increased in parallel with ABP in SCGx rats over an ABP range of 90% to 140% of baseline ABP, while in sham rats ChBF remained stable and uncorrelated with ABP. ERG a- and b-wave latencies and amplitudes, and visual acuity were significantly reduced after SCGx. In SCGx retina, Müller cell GFAP immunolabeling was upregulated 2.5-fold, and Iba1+ microglia were increased 3-fold. Dopaminergic amacrine cell fibers in inner plexiform layer were reduced in SCGx rats, and photoreceptors were slightly depleted. Functional deficits and pathology were correlated with impairments in sympathetic regulation of ChBF.ConclusionsThese studies indicate that sympathetic denervation of choroid impairs ChBF baroregulation during elevated ABP, leading to choroidal overperfusion. This defect in ChBF regulation is associated with impaired retinal function and retinal pathology. As sympathetic ChBF baroregulatory defects have been observed in young individuals with complement factor H (CFH) polymorphisms associated with risk for AMD, our results suggest these defects may harm retina, perhaps contributing to AMD pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call