Abstract

A series of black TiO2 with and without the addition of urea were successfully prepared using a simple one-step synthetic method by calcination under different atmospheres (vacuum, He, or N2). The physicochemical, optical, and light-induced charge transfer properties of the as-prepared samples were characterized by various techniques. It was found that a vacuum atmosphere was more beneficial for the formation of oxygen vacancies (OVs) than the inert gases (He and N2) and the addition of urea-inhibited OVs formation. The samples annealed in the vacuum condition exhibited better visible-light adsorption abilities, narrower bandgaps, higher photo-induced charge separation efficiency, and lower recombination rates. Hydroxyl radicals (·OH) were the dominant oxidative species in the samples annealed under a vacuum. Finally, the samples annealed under vacuum conditions displayed higher photocatalytic activity for methylene blue (MB) degradation than the samples annealed under He or N2. Based on the above, this study provides new insights into the effects of annealing atmospheres and urea addition on the properties of black TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.