Abstract

Autophagy is an evolutionarily conserved catabolic process that transports cytoplasmic components to lysosomes for degradation. In addition to the canonical view of strict stress-response-induced autophagy, selectively programmed autophagy was recently reported in the context of gonad development of flies and worms, where autophagy seems to be necessary for clearance of germ plasm components. Similar functions have not been described in vertebrates. We used the medaka fish to study the role of autophagy in gonad formation and gametogenesis for the first time in a vertebrate organism for which the germ line is specified by germ plasm. Using a transgenic line deficient in the Ol-epg5 gene—a new critical component of the autophagy pathway—we show that such deficiency leads to an impaired autophagic flux, possibly attributed to compromised maturation or processing of the autophagosomes. Ol-epg5 deficiency correlates with selectively impaired spermatogenesis and low allele transmission rates of the mutant allele caused by failure of germ plasm and mitochondria clearance during the process of germ cell specification and in the adult gonads. The mouse epg-5 homolog is similarly expressed in the maturating and adult testes, suggesting an at least partially conserved function of this process during spermatogenesis in vertebrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.