Abstract

BackgroundIn order to detect glaucomatous optic nerve damages early on and evaluate the severity of glaucoma, a previously developed analytic method based on photographic retinal nerve fiber layer (RNFL) angle defect was proposed. However, the correlation between these defective angles and the severity of visual field defect has not been verified. This study aimed to confirm the correlation described above.MethodsWe reviewed a total of 227 glaucomatous eyes (38 enrolled, 189 excluded) during an interval of 5 years. The angles of all eyes were measured on RNFL photograph, of which angle α is the angular width between the macula center and the proximity of RNFL defect, and angle β (+c) is the sum of angular width(s) of localized RNFL defect. The severity of visual field defect was determined by mean deviation (MD), pattern standard deviation (PSD), and visual field index (VFI). Correlation analysis was performed on angle α and angle β (+c) with the presence of central scotoma and visual field defect parameters, respectively.ResultsAngle β (+c) showed significant correlation with MD (P = 0.007), PSD (P = 0.02), VFI (P = 0.03), and average RNFL thickness (P = 0.03). No correlation was found between angle α and the presence of central scotoma.ConclusionsIn conclusion, measuring the angular width of localized RNFL defect is a viable method for determining the severity of visual field defect.

Highlights

  • In order to detect glaucomatous optic nerve damages early on and evaluate the severity of glaucoma, a previously developed analytic method based on photographic retinal nerve fiber layer (RNFL) angle defect was proposed

  • Detection is of utmost importance for glaucomatous eyes, and using conventional retinal nerve fiber layer (RNFL) photograph to evaluate localized retinal nerve fiber layer defects (RNLFD) is a tool of choice for detecting early glaucomatous eyes when optical coherence topography (OCT) is unavailable

  • Participants were of early glaucoma defects with an average visual field mean deviation (MD) of − 4.7 ± 3.2 dB and an average RNFL thickness of 76.1 ± 16.3 μm

Read more

Summary

Introduction

In order to detect glaucomatous optic nerve damages early on and evaluate the severity of glaucoma, a previously developed analytic method based on photographic retinal nerve fiber layer (RNFL) angle defect was proposed. Woo et al previously established a convenient quantitative method for analyzing localized RNFL defect using RNFL photograph by measuring the angles around the disc [2]. They first defined the reference line as the line between the macula center and the optic disc center. Angle α is the angular width between the reference line and the proximity of RNFL defect, while angle β (+c) is the sum of angular width(s) of localized RNFL defect This method was used to compare different etiologies of various types of glaucoma [2, 3]. The idea was built upon the assumption that localized RNFLD or the

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.