Abstract

We show the alignment of defect dipoles along the direction of the spontaneous polarization in polycrystalline Pb(Zr,Ti)O3 and BaTiO3 ferroelectric ceramics using electron paramagnetic resonance (EPR). The alignment is demonstrated via orientation dependent paramagnetic centers in the polycrystalline materials and computer modeling of the EPR line shapes. It is shown that defect dipoles can become aligned by oxygen vacancy motion in the octahedron about a negatively charged center for the oxygen vacancy-related dipole complexes or by defect displacement and domain realignment in the lattice for isolated defect centers. We find that the alignment is not observed in nonferroelectric materials such as SrTiO3, and is destroyed in ferroelectric materials by heating above the Curie temperature. These observations suggest an interplay between distortion in the unit cell and the ability to align defect dipoles, as is the case more generally for ferroelectric dipole alignment. We also directly observe aligned intrinsic Ti and Pb ion displacements in the ferroelectric Pb(Zr,Ti)O3 perovskite unit cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call