Abstract

The effect of deformation speed on defect structures introduced into bulk gold specimens at 298 K has been investigated systematically over a wide range of strain rate from ε′=10 −2 to 10 6 s −1. As strain rate increased, dislocation structure changed from heterogeneous distribution, so-called cell structure, to random distribution. Also, stacking fault tetrahedra (SFTs) were produced at anomalously high density by deformation at high strain rate. The anomalous production of SFTs observed at high strain rate is consistent with the characteristic microstructure induced by dislocation-free plastic deformation, which has been recently reported in deformation of gold thin foils. Thus, the results of the present study indicate that high-speed deformation induces an abnormal mechanism of plastic deformation, which falls beyond the scope of dislocation theory. Numerical analysis of dislocation structure and SFTs revealed that the transition point of variation of deformation mode is around the strain rate of 10 3 s −1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.