Abstract
The defect structure of Ge(111) epilayers grown by molecular beam epitaxy on cubic Pr2O3(111)/Si(111) support systems was investigated by means of transmission electron microscopy and laboratory-based x-ray diffraction techniques. Three main types of defects were identified, namely, rotation twins, microtwins, and stacking faults, and studied as a function of Ge film thickness and after annealing at 825 °C in ultrahigh vacuum. Rotation twins were found to be localized at the Ge(111)/cubic Pr2O3(111) interface and their amount could be lowered by the thermal treatment. Microtwins across {111¯} were detected only in closed Ge films, after Ge island coalescence. The fraction of Ge film volume affected by microtwinning is constant within the thickness range of ∼20–260 nm. Beyond 260 nm, the density of microtwins is clearly reduced, resulting in thick layers with a top part of higher crystalline quality. Microtwins resulted insensitive to the postdeposition annealing. Instead, the density of stacking faults across {111¯} planes decreases with the thermal treatment. In conclusion, the defect density was proved to diminish with increasing Ge thickness and after annealing. Moreover, it is noteworthy that the annealing generates a tetragonal distortion in the Ge films, which get in-plane tensely strained, probably due to thermal mismatch between Ge and Si.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.