Abstract

Based on results from experimental and theoretical studies of the crystal structure of lanthanum tungstate (La28−xW4+xO54+32xv2−32x), we present a defect model comprising an inherently disordered and partially occupied oxide ion sublattice, which rationalizes hydration and ionic conduction of the materials in the undoped state. Applying the model to experimental conductivity data enables extraction of defect thermodynamics and transport parameters of protons, oxide ions and electronic defects. The standard enthalpy and entropy changes of the hydration of inherent oxygen vacancies are estimated to be −83 kJ/mol and −125 J/mol K (per mole of H2O), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.